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Analysis for Microscopic Hyperbolic Two-Step Heat
Transfer Problems
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This work analyzes the heat transfer problems in thin metal films using the
microscopic hyperbolic two-step model. It is necessary in dealing with such
problems to solve a set of the coupled energy equations or an equation con-
taining higher-order mixed derivatives in both time and space. This present
numerical scheme eliminates the coupling between energy equations with the
Laplace transform technique and leads to a second-order governing differ-
ential equation in the transform domain. Afterward, the transformed sec-
ond-order governing differential equation is discretized by the control volume
scheme. To demonstrate the efficiency and accuracy of the present numerical
scheme, a comparison between the present numerical results and the analyt-
ical solution is made. Theoretical insight into the hyperbolic two-step heat
conduction is provided. Results show that the thermal propagation velocity
is finite and is independent of the coupling factor and the volumetric heat
capacity ratio between electrons and the lattice.

KEY WORDS: ballistic behavior; high-rate heating; hybrid numerical scheme;
hyperbolic two-step model.

1. INTRODUCTION

The use of high-rate heating on thin films is rapidly developing in mi-
cromachining, laser processing of diamond films, laser hardening, and
other applications, due to the advancement of short-pulse energy deposi-
tion technologies. The energy pulse can be deposited over a duration of
femtoseconds [1–3]. When such an energy pulse heats a thin metal film,
the response time of the film is comparable to the phonon–electron ther-
malization time. Under such conditions, classical heat conduction models,
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assuming thermal equilibrium between the solid lattice and electron gas,
lose validity. Thus, Kaganov et al. [4] described the phenomena of energy
interchange between electrons and phonons from a microscopic point of
view. Anisimov et al. [5] derived the resulting phenomenological two-step
model that is called the parabolic two-step heat conduction model, which
has attracted attention in the analysis of micro-scale heat transfer [6–11].
However, as the response time is comparable or less than the relaxation
time that is the characteristic time for the activation of ballistic behav-
ior in the electron gas, the parabolic two-step model may lose accuracy
[12, 13]. The relaxation time increases dramatically as the temperature
decreases (from 0.04 ps at room temperature to about 10 ps at 10 K) [9].
Therefore, Qiu and Tien [12] proposed the hyperbolic two-step heat con-
duction model based on the macroscopic averages of the electric and heat
currents carried by electrons in the momentum space. This model has been
a satisfactory extension of the parabolic two-step model.

The solution of the coupled energy equations in the microscopic hyper-
bolic two-step model is difficult, even after eliminating the coupling, since
the resulting equation contains higher-order mixed derivatives in both time
and space and leads to complications in the solution procedures [14]. Thus,
only a few studies [14–17] for theoretical predictions of the hyperbolic two-
step heat conduction are available in the literature for some specific cases.
For convenience of analysis, Al-Nimr and Arpaci [14] considered that the
thermal behavior in thin metal films occurs in two separate stages. The first
stage is very short and is described with the hyperbolic two-step model
excluding the diffusion term. The second stage is described with the hyper-
bolic one-step model. Al-Nimr et al. [15] used a perturbation technique to
analyze the distribution of both electron and lattice temperatures in a semi-
conductor film induced with the application of a strong energy pulse. How-
ever, the results do not completely satisfy the boundary conditions. The
effect of high frequency fluctuating boundary heating on the hyperbolic two-
step model was investigated with the complex method in Ref. [16]. In addi-
tion, the effect of the initial conditions of the lattice on the overshooting
phenomenon was explored in Ref. [17] assuming that the effect from the
initial conditions of the electron gas was ignored.

This work employs a hybrid application of the Laplace transform
technique and the control volume method to solve various hyperbolic two-
step heat conduction problems. The time-dependent terms in the govern-
ing differential equations and boundary conditions can be removed with
the Laplace transform method. Thus, the coupling between the energy
equations of the hyperbolic two-step model is eliminated. A second-order
governing differential equation in the transform domain is obtained. The
control volume scheme in conjunction with the approximation functions,
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which are derived from a corresponding differential equation of the gov-
erning equation in the transform domain, is applied to discretize the
resulting second-order differential equation.

2. MATHEMATICAL FORMULATION

Energy conservation equations and the heat flux equation for the
hyperbolic two-step heat conduction model with the constant thermal
properties are written as [12]

Ce
∂Te

∂t
=−∂q

∂x
−G(Te −Tl)+S, (1a)

Cl
∂Tl

∂t
=G(Te −Tl), (1b)

τ
∂q

∂t
+k

∂Te

∂x
+q =0, (1c)

where C is the volumetric heat capacity, G is the coupling factor, k is
the thermal conductivity, q is the heat flux, S is the radiation heating
source, T is the temperature, t is the time, x is the space coordinate, and
τ is the relaxation time. The subscripts e and l represent electron and
lattice, respectively. Qiu and Tien [12] derived these equations under the
assumptions that there is no electrical current during laser heating, that
the electron gas totally absorbed the incident radiation, and that the ther-
mal conductivity is completely contributed by the electron gas. The hyper-
bolic nature of energy transport by electrons is shown in Eq. (1c). The

propagation speed of the thermal signal may be defined as V =
√

k
/
(Ceτ),

in accordance with that for the hyperbolic one-step model. The τ
∂q
∂t

term
in Eq. (1c) can be neglected as the value of the relaxation time τ is suffi-
ciently small, and then Eqs. (1a)–(1c) will become the equations of the
parabolic two-step model.

For convenience of analysis, the dimensionless parameters are defined
as

θ = T −T0

Tr
, η= x√

kτ/Ce
, ξ = t

τ
, Q= q

Tr
√

kCe/τ
,

E = Sτ

CeTr
, N = Gτ

Ce
, and RC = Cl

Ce
, (2)

where T0 is the initial temperature and Tr is the reference temperature.
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Substituting the dimensionless parameters in Eq. (2) into Eqs. (1a)–
(1c) produces the dimensionless governing equations as

∂θe

∂ξ
=−∂Q

∂η
−N(θe − θl)+E, (3a)

RC

∂θl

∂ξ
=N(θe − θl), (3b)

∂Q

∂ξ
+Q=−∂θe

∂η
. (3c)

The combination of Eqs. (3a)–(3c) leads to the following equation:

RC

N

∂3θl

∂η2∂ξ
+ ∂2θl

∂η2
= RC

N

∂3θl

∂ξ3
+

[
1+RC + RC

N

]
∂2θl

∂ξ2

+ [1+RC ]
∂θl

∂ξ
− ∂E

∂ξ
−E. (4)

It can be easily observed that Eq. (4) contains higher-order mixed
derivatives in both time and space. Some mathematical techniques must
be applied to obtain an analytical solution of Eq. (4). Tzou [13, 18–20]
has developed an analytical solution for the relevant problems using the
Laplace transform.

The initial conditions of the problems illustrated in this work are
given as

θe(η,0)= θl(η,0)=0 and Q(η,0)=0. (5)

The boundary conditions for the present problems will be discussed
later.

3. NUMERICAL ANALYSIS

The Laplace transform technique is applied to remove the time-
dependent terms from Eqs. (4a)–(4c). The Laplace transform is defined as

φ̃(s)=
∫ ∞

0
φ(ξ)e−sξ dξ, (6)
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where s is the Laplace transform parameter. As the Laplace transforma-
tion of the heating source function E can be obtained, Eqs. (3a)–(3c) are
written in the transform domain, respectively, as

dQ̃

dη
= −(s +N)θ̃e +Nθ̃l + Ẽ, (7a)

θ̃l = N

RCs +N
θ̃e, (7b)

dθ̃e

dη
= −(s +1)Q̃. (7c)

Rearrangement of Eqs. (7a)–(7c) leads to the equations,

d2θ̃e

dη2
−β2θ̃e =−(s +1)Ẽ, (8a)

and

d2θ̃l

dη2
−β2θ̃l =−N(s +1)

RCs +N
Ẽ, (8b)

where

β =
[
(s2 + s)+N(s +1)− N2(s +1)

RCs +N

]1/2

. (9)

In conjunction with the boundary conditions, the dimensionless elec-
tron temperature distribution can be analyzed with Eq. (8a). Similarly,
using Eq. (8b) the dimensionless lattice temperature distribution can be
directly analyzed. For convenience, in the subsequent analysis, Eqs. (8a)
and (8b) are expressed in one form as

d2θ̃

dη2
−β2θ̃ + H̃ =0, (10)

where

H̃ = (s +1)Ẽ, for Eq. (8a) (11a)

and

H̃ = N(s +1)

RCs +N
Ẽ. for Eq. (8b) (11b)
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Subsequently, Eq. (10) is discretized using the control volume method.
Integration of Eq. (10) within a small control volume can be written as

∫ ηi+�/2

ηi−�/2

{
d2θ̃

dη2
−β2θ̃ + H̃

}
dη=0 (12)

where � is the distance between neighboring nodes. Before performing the
integration of Eq. (12), the selection of an approximation function for θ̃

is important in order to have more accurate numerical results. Tradition-
ally, the variable temperature distribution is linearly interpolated between
the nodes [21]. To suppress the numerical oscillations encountered in
non-Fickian mass diffusion problems, Chen and Liu [22–24] derived the
approximation functions from the associated differential equation in the
transform domain. Results in the previous studies [22–24] show that a
good selection of the approximation functions is important to obtain accu-
rate numerical results. A general solution of the corresponding homoge-
neous equation of Eq. (10) is

θ̃ =A cosh βη+B sinh βη, (13)

where the coefficients A and B are determined with the boundary condi-
tions. The approximation function for θ̃ in this work, thus, is considered
as

θ̃ =A cosh βη+B sinh βη+ P̃ , (14)

where the function P̃ is a particular solution of Eq. (10).
When θ̃ (ηi) and θ̃ (ηi+1) are defined, respectively, as

θ̃ (ηi)= θ̃i and θ̃ (ηi+1)= θ̃i+1, (15)

the approximation function, Eq. (14), in the interval [ηi, ηi+1] can be writ-
ten as

θ̃ = 1
sinh β�

[
sinh β(η−ηi)(θ̃ − P̃ )i+1 + sinh β(ηi+1 −η)(θ̃ − P̃ )i

]+ P̃ .

(16)

Similarly, the approximation function in the interval [ηi−1, ηi ] can be
written as

θ̃ = 1
sinh β�

[
sinh β(η−ηi−1)(θ̃ − P̃ )i + sinh β(ηi −η)(θ̃ − P̃ )i−1

]+ P̃

(17)
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Substituting Eqs. (16) and (17) into Eq. (12) and then evaluating the
resulting integral can produce the following discretized form for the inte-
rior nodes as

Ci−1θ̃i−1 +Ciθ̃i +Ci+1θ̃i+1 =Fi i =2,3, . . . ,m−1, (18)

where the coefficients Ci−1, Ci , and Ci+1 are given as

Ci−1 =1, (19a)

Ci =−2 cosh(β�), (19b)

Ci+1 =1, (19c)

and the forcing term is given as

Fi = P̃i−1 −2 cosh β� P̃i + P̃i+1

+ sinh β�

β

[∫ ηi+�/2

ηi−�/2

[
β2P̃ − H̃

]
dη− dP̃

dη

∣∣∣∣
ηi+�/2

ηi−�/2

]
. (20)

The resulting integral value of the fourth term in the right side of
Eq. (20) would be zero as the function P̃ is determined to be the particu-
lar solution of Eq. (10), and the structure of the governing algebraic equa-
tions is simplified.

Rearrangement of Eq. (18) with the appropriate boundary conditions
yields the following matrix equation as

[C]
{
θ̃
}={F } , (21)

where [C] is a matrix with the complex number s,
{
θ̃
}

is a matrix rep-
resenting the unknown dimensionless nodal temperatures in the Laplace
transform domain, and {F } is a vector representing the forcing term.
Thereafter, application of the Gaussian elimination algorithm and the
numerical inversion of the Laplace transform [25] to Eq. (21) can yield the
nodal temperatures in the physical domain.

4. RESULTS AND DISCUSSION

Numerical results for the hyperbolic two-step heat conduction prob-
lems with the insulated boundary condition are developed. The thermal
properties for metals at room temperature are shown in Table I. To inves-
tigate the effect of the thermal properties on the microscopic thermal
behavior in thin metal films, the present results are computed with various
values of RC and N .
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Table I. Thermal Properties for Metals at Room Temperature [26]

Au Ag Cu Cr W Pb

G(T W · m−3 · K−1) 28000 28000 48000 420000 260000 120000
Ce(MJ · m−3 · K−1) 0.021 0.019 0.029 0.058 0.041 0.049
Cl(MJ · m−3 · K−1) 2.5 2.5 3.4 3.2 2.5 1.5
k(W · m−1 · K−1) 317 429 401 93.7 174 35.3
τ (ps) 0.04 0.04 0.03 0.003 0.01 0.005

4.1. One End at Constant Temperature and the Other Insulated

It is assumed that the temperature distribution in the sample film is
induced with the constant boundary temperature and E is regarded as
zero. The boundary conditions are considered as

θe(0, ξ)=1 and
∂θe(1, ξ)

∂η
=0. (22)

As E = 0 (i.e., Ẽ = 0), Eq. (8a) is a homogeneous differential equation.
Applying the Laplace transform to Eq. (22) and using Eq. (8a), the ana-
lytical solution of θ̃e for this case is obtained;

θ̃e = 1
s
(cosh βη− tanh β sinh βη), (23)

and then the analytical solution of θ̃l can be obtained from Eqs. (7b) and
(23). Numerical inversion of the Laplace transform [25] can be applied to
perform the inverse transform of θ̃e and θ̃l for θe and θl.

Table II shows the numerical results of θe for ξ = 0.5, RC = 100, and
N = 60, computed with different � values from 0.005 to 0.04. The pres-
ent results are in good agreement for various � values, that is, the pres-
ent numerical scheme is not sensitive to the value of � for such a problem.
The magnitude of θe (η,0.5) drops from the order of 10−6 to the order of
10−14 in the domain 0.5�η�0.51. These phenomena imply that the pres-
ent numerical results are convergent, and the velocity of heat propagation
in the hyperbolic two-step model is finite.

Table II. Numerical Values of θe(η,0.5) Computed at Different � Values for the Case of
Constant Boundary Temperature

η 0.1 0.2 0.3 0.4 0.5 0.51

θe 0.40494 0.10180 0.01285 0.00050 1×10−6 −1×10−14
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Fig. 1. Distributions of electron and lattice temperatures at different
times with RC = 100 and N = 60 for the case of constant boundary
temperature.

Figure 1 presents the distributions of electron and lattice tempera-
tures for various ξ values with RC = 100 and N = 60. To demonstrate the
accuracy and consistency of the present numerical method, a comparison
of the dimensionless temperature distribution between the present numer-
ical results and the analytical solution is also shown. The present numer-
ical results agree well with the analytical solution. It is found that the
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magnitude of the dimensionless temperature distribution increases as the
value of ξ increases. This is because the heat flux from the end at η = 0
continually enters into the sample film since ξ > 0. However, due to the
diffusion and coupling effects, the increasing rate in the magnitude of the
electron and lattice temperatures gradually decreases with an increase in
the value of ξ .

In order to know the effect of the coupling factor on the hyperbolic
two-step heat conduction, Fig. 2 displays the distributions of θe for various
N values at RC =100 and ξ =0.5. It is explained from the definition of N

that the value of N is proportional to the coupling factor. In other words,
the amount of energy exchange between electrons and phonons would be
proportional to the value of N . The rate of energy exchange decreases
with a decrease in the value of N . The magnitude of the electron tempera-
ture distribution is higher for a smaller value of N , as shown in Fig. 2. It
also can be found from the results in Fig. 2 that the effect of the coupling
factor on the dimensionless electron temperature distribution for RC =100
and ξ =0.5 is reduced with an increase in the value of N .

Figure 3 shows the dimensionless electron temperature distribution
for various RC values at N = 60 and ξ = 0.5. RC is the volumetric heat
capacity ratio and is defined as RC =Cl

/
Ce. As the value of RC increases,

the value of Cl increases and the lattice can accumulate more energy.
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Present results
Analytical solution
RC =100; ξ=0.5

θe

N=30

N=50

N=70
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1
η

Fig. 2. Comparison between the present numerical results and the
analytical solution at different N values for the case of constant
boundary temperature.
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Fig. 3. Comparison between the present numerical results and the
analytical solution at different RC values for the case of constant
boundary temperature.

Thus, the lattice temperature has a relatively low value for the larger value
of RC . Energy exchange between electrons and phonons is easier, and
there is a lower electron temperature as shown in Fig. 3. Figures 2 and
3 also show the comparison of the dimensionless temperature distribu-
tion between the present numerical results and the analytical solution. The
result further demonstrates the accuracy of the present results.

4.2. Application of Strong Energy Pulse at the End

Assume an impulse energy source that is totally absorbed by the elec-
tron gas is released at ξ =0 and at the end η=0. The other end, η=1, is
insulated. The boundary conditions, thus, are described as

Q(0, ξ)= δ(ξ) and
∂θe(1, ξ)

∂η
=0, (24)

where δ is the Dirac function.
Applying the Laplace transform to Eq. (24) can result in the trans-

formed boundary conditions as

dθ̃e(0)

dη
=−(s +1) and

dθ̃e(1)

dη
=0. (25)
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Therefore, by using Eq. (8a) with Ẽ = 0, an analytical solution of θ̃e
can be obtained;

θ̃e = (s +1) cosh β cosh βη

β sinh β
− (s +1) sinh βη

β
. (26)

Similarly, an analytical solution of θ̃l can be obtained from Eqs. (7b)
and (26), and performing the inverse transform of θ̃e and θ̃l leads to the
values of θe and θl.

Figure 4 shows the spatial variation of both electron and lattice tem-
peratures induced with the application of a strong energy pulse at differ-
ent ξ values for RC = 100 and N = 60. It is found from Fig. 4 that the
energy pulse gradually decays with an increase in the value of ξ due to
the electron–phonon interaction and the diffusion in the electron gas. In
addition, it is observed from the electron temperature distribution that the
locations of the energy pulse are at η = 0.2 and 0.4 for ξ = 0.2 and 0.4,
respectively. This phenomenon implies that heat transfers at a finite veloc-
ity based on the hyperbolic two-step model. At the same time, the location
of the energy pulse is the depth of the thermal signal penetrating into the
film and is equal to tV. Thus, in accordance with the definition of η and

ξ , the velocity of heat transfer can be converted to V =
√

k
/
(Ceτ), sim-

ilar to that for the hyperbolic one-step model. Due to the Dirac’s func-
tional form of the heating source, the energy pulses at η=0.2 and 0.4 for
ξ = 0.2 and 0.4, respectively, are sharp. The primary difficulty in dealing
with this case is the suppression of numerical oscillations in the vicinity of
the sharp discontinuity. The results show that the present numerical results
agree well with the analytical solution and do not exhibit numerical oscil-
lations in the vicinity of the jump discontinuity. Al-Nimr et al. [15] solved
a similar case with a perturbation technique under the assumption that
the difference between the temperatures of electrons and the lattice is suffi-
ciently small. Their results show that the perturbation technique fails near
η = 0 and ξ = 0. However, the present results satisfy the boundary condi-
tions and agree well with the analytical solution. Obviously, the present
numerical scheme is stable and accurate for such problems.

In order to explore further the effect of the coupling factor on the
solution of the hyperbolic two-step heat conduction equations, Fig. 5
shows the distributions of the dimensionless electron temperature at ξ =
0.5 for various N values and RC = 100. The value of N is proportional
to the coupling factor. Thus, the energy pulse has been weak at N = 50
and 90 for the electron–phonon interaction. In addition, the location of
the energy pulse at a specific dimensionless time is the same for various N

values. This phenomenon further implies that the propagation velocity of
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Fig. 4. Distributions of electron and lattice temperatures at different
times with RC = 100 and N = 60 for the case of application of strong
energy pulse.
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Fig. 5. Comparison between the present numerical results and the
analytical solution at different N values for the case of application of
strong energy pulse.

the thermal signal based on the hyperbolic two-step model can be defined

as V =
√

k
/
(Ceτ) and is independent of the value of N .

Figure 6 shows the dimensionless electron temperature distributions
for the situations described in Fig. 3. It is obvious that the strength of
the energy pulse shown in Fig. 6 is very weak. However, it can be clearly
observed that the location of the energy pulse at a specific dimensionless
time is also the same for various RC values. This result demonstrates that
the propagation velocity of the thermal signal is also independent of the
RC value. The results illustrated in Figs. 5 and 6 imply that the propaga-
tion velocity of the thermal signal depends only on the thermal diffusivity,
k/Ce, and the relaxation time τ . Furthermore, the electron temperature is
at a relatively low value for the larger value of RC . It is the same as that
shown in Fig. 3.

4.3. Exponentially Decaying Heat Source

In this section, the thermal behavior induced by an exponentially
decaying internal source is analyzed. The internal source is considered as
an exponential function of η and ξ such that E(η, ξ) is given by

E(η, ξ)= e−η−ξ , (27)
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Fig. 6. Comparison between the present numerical results and the
analytical solution at different RC values for the case of application
of strong energy pulse.

and then

Ẽ = 1
s +1

e−η. (28)

Therefore, the force term in Eq. (8a) cannot be neglected in this case.
For obtaining accurate numerical results, the function P̃ is considered as

P̃ = 1
β2 −1

e−η. (29)

As the sample film is subjected to the boundary conditions,

∂θe(0, ξ)

∂η
=0 and

∂θe(1, ξ)

∂η
=0, (30)

the analytical solution of θ̃e can be written as

θ̃e = 1
β(β2 −1)

sinh βη+ e−1 − cosh β

β(β2 −1) sinh β
cosh βη+ 1

β2 −1
e−η. (31)

The analytical solution of θ̃l is also obtained from Eqs. (7b) and (31),
and the values of θe and θl are computed through the Laplace transform.
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A comparison between the present numerical results and the analyt-
ical solution is presented in Fig. 7. The present numerical results also
agree well with the analytical solution and satisfy the boundary conditions.
This result demonstrates further the efficiency and accuracy of the present
numerical scheme for solving the coupled equations of the hyperbolic two-
step model. It is observed from Fig. 7 that the electron gas has a higher
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Fig. 7. Distributions of electron and lattice temperatures at different
times with RC =100 and N =60 for the case of exponentially decaying
heat source.
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temperature for ξ�1.5 due to the fact that the electron gas absorbs the
energy first. But, both electron and lattice temperatures approach a state
of equilibrium with the value of ξ increasing for the coupling effect.

5. CONCLUSIONS

This work analyzes various microscopic heat transfer problems in a
sample film with an insulated boundary surface using the hyperbolic two-
step model. The present numerical results show no remarkable difference
with the analytical solution. It demonstrates the accuracy of the present
numerical scheme for such problems. Results further imply that the prop-
agation velocity of the thermal signal, based on the hyperbolic two-step
model, is also finite and is independent of the values of N and RC . How-
ever, there is no obvious thermal wave front depicted in the hyperbolic
one-step heat conduction, even when the heat source is described with
Dirac’s function, due to the electron–phonon interactions.

NOMENCLATURE

C volumetric heat capacity

E dimensionless heating source, defined as E = Sτ

CeTr
Ẽ

Ẽ Laplace transform of E

G coupling factor
k thermal conductivity
� distance between neighboring nodes

N parameter, defined as N = Gτ

Ce

Q dimensionless heat flux, defined as Q= q

Tr
√

kCe/τ
Q̃ Laplace transform of Q

q heat flux
RC parameter, defined as RC = Cl

Ce
S heating source
s Laplace transform parameter
T temperature
T0 initial temperature
Tr reference temperature
t time

V propagation speed of thermal signal, defined asV =
√

k
/
Ceτ

x space coordinate
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Greek Symbols

β parameter, defined in Eq. (9)

η dimensionless space coordinate, defined as η = x√
kτ/Ce

θ dimensionless temperature, defined as θ = T −T0

Tr
θ̃ Laplace transform of θ

ξ dimensionless time, defined as ξ = t

τ
τ relaxation time

Subscripts

e electron
i node number
l lattice
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